This Consumer Confidence Report contains important information about the quality of your drinking water, including detailed results of state and federally mandated tests for various contaminants. In 2017 there were no EPA Safe Drinking Water Act violations to report.

Gwinnett focuses on water conservation

Gwinnett County’s Water Conservation Program includes initiatives designed to educate our customers and the community about water efficient behaviors and to safeguard our future water supply. Our efforts include public outreach activities, rebates and incentives for replacing older fixtures, and efficient water management practices throughout the County.

Public outreach

The Department of Water Resources (DWR) developed Homeowner H2O to educate Gwinnett County residents about water conservation. The presentations focus on leak detection and repair, installing water-efficient fixtures, and increasing water-saving behaviors inside and outside the home.

Department representatives are available to speak to homeowners associations, civic clubs, and other community groups. Homeowner H2O conservation workshops are also offered to the public several times a year to help all of our customers learn how to reduce their water bills. In 2017, nearly 400 Gwinnett County residents attended a water conservation workshop.

DWR launched a school outreach program called Water on Wheels to target primary education. These classroom-based programs are available to travel to schools throughout Gwinnett County. Students participate in engaging hands-on lessons that teach the importance of water conservation and foster attitudes that inspire lifelong water efficient behaviors. All Water on Wheels lessons support Academic Knowledge and Skills standards for science. Programs are also available to Gwinnett County scouts, summer camps, libraries, and recreation centers. More than 10,000 students received hands-on water conservation education through the Water on Wheels program in 2017.

To schedule an educational program or tour for your group, contact DWR Outreach and Education at dwrschools@gwinnettcounty.com or 678.376.6722. All public outreach programs are offered free of charge to Gwinnett County residents, schools, and businesses.

Lake Lanier provides excellent water

Gwinnett County receives its drinking water supply from Lake Sidney Lanier located just north of Buford. The county’s water intakes provide a uniform raw water supply that is low in suspended materials, bacteria, dissolved organics, and metals.

Lake Lanier, formed by Buford Dam holding the Chattahoochee and Chestatee Rivers, is a major recreation area in north Georgia. In fact, it is one of the most-visited U.S. Army Corps of Engineers projects in the country and offers opportunities for boating, fishing, and other water pastimes. People throughout the region enjoy Lanier and its plentiful recreation opportunities.

Lake Lanier is key in providing water to Georgia, since more than 60 percent of Georgia’s population receives drinking water from the Chattahoochee River system. The Lake Lanier watershed comprises more than 1,000 square miles in 10 Georgia counties.

The watershed contains heavily forested areas and smaller cities. Additionally, agriculture is the primary activity in the watershed.

Gwinnett’s two water production facilities, Shoal Creek and Lanier Filter Plants, are among the best in the industry, earning numerous awards for flawless yearly plant operation.

Public Input Opportunities

The Gwinnett County Water and Sewerage Authority, which owns the Water Resources water and wastewater system, acts as an advisory agency to the Gwinnett County Board of Commissioners. The authority meets monthly at the DWR Central Facility. For a schedule of meetings, visit the County’s website at www.gwinnettcounty.com.
2017 Water Quality Data

EPA Regulated Inorganic Substances or Contaminants

<table>
<thead>
<tr>
<th>Substance (Unit)</th>
<th>Analysis Frequency</th>
<th>MCL</th>
<th>MCLG</th>
<th>Average</th>
<th>Range</th>
<th>Major Sources</th>
<th>Violation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluoride (ppm)</td>
<td>Annually</td>
<td>4</td>
<td>4</td>
<td>0.75</td>
<td>0.63 – 0.85</td>
<td>Erosion of natural deposits; water additive which promotes strong teeth</td>
<td>No</td>
</tr>
<tr>
<td>Nitrate/Nitrite (ppm)</td>
<td>Annually</td>
<td>10</td>
<td>10</td>
<td>0.545</td>
<td>0.44 – 0.65</td>
<td>Runoff from fertilizer use; leaching from septic tanks; erosion of natural deposits</td>
<td>No</td>
</tr>
</tbody>
</table>

1 Fluoride is added to water to help promote dental health in children.
2 Nitrate and Nitrite are measured together.

Gwinnett County Water Distribution System – Lead and Copper Levels at Residential Taps

<table>
<thead>
<tr>
<th>Substance (Unit)</th>
<th>Action Level 90%</th>
<th>90th Percentile sample result</th>
<th>Number of sites exceeding Action Level (AL)</th>
<th>Major Sources</th>
<th>Violation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead (ppb)</td>
<td>15</td>
<td>1.1</td>
<td>1</td>
<td>Corrosion of household plumbing systems</td>
<td>No</td>
</tr>
<tr>
<td>Copper (ppm)</td>
<td>1.30</td>
<td>0.16</td>
<td>0</td>
<td>Corrosion of household plumbing systems</td>
<td>No</td>
</tr>
</tbody>
</table>

Gwinnett is required to test a minimum of 50 homes for lead and copper every three years. The last testing occurred in 2017, and the next testing will take place in 2020. Compliance with the Lead and Copper Rule is based on obtaining the 90th percentile of the total number of samples collected and comparing it against the lead and copper action levels. To have an exceedance, the 90th percentile value must be greater than 15 ppb for lead or 1.3 ppm for copper.

3 Of the 50 homes tested in 2017, one site exceeded the lead action level (AL) for lead.
4 Of the 50 homes tested in 2017, no sites exceeded the lead action level (AL) for copper.

Disinfection By-Products, By-Product Precursors, and Disinfectant Residuals

<table>
<thead>
<tr>
<th>Substance (Unit)</th>
<th>Analysis Frequency</th>
<th>MCL (LRAA)</th>
<th>MCLG (LRAA)</th>
<th>Highest Detected LRAA</th>
<th>Range</th>
<th>Major Sources</th>
<th>Violation</th>
</tr>
</thead>
<tbody>
<tr>
<td>TTHMs (Total Trihalomethanes) (ppb) - Stage 2</td>
<td>Quarterly</td>
<td>80</td>
<td>0</td>
<td>60.1</td>
<td>9.5 – 60.1</td>
<td>By-products of drinking water disinfection</td>
<td>No</td>
</tr>
<tr>
<td>HAA5s (Haloacetic Acids) (ppb) - Stage 2</td>
<td>Quarterly</td>
<td>60</td>
<td>0</td>
<td>32</td>
<td>8.525 – 32.0</td>
<td>By-products of drinking water disinfection</td>
<td>No</td>
</tr>
<tr>
<td>TOC (Total Organic Carbon) (ppm)</td>
<td>Monthly</td>
<td>TT</td>
<td>N/A</td>
<td>Average=1.17</td>
<td>0.89 – 1.5</td>
<td>Decay of naturally-occurring organic matter in the water withdrawn from sources such as lakes and streams</td>
<td>No</td>
</tr>
<tr>
<td>Chlorine (ppm)</td>
<td>Monthly</td>
<td>MRDL=4</td>
<td>MRDLG=4</td>
<td>Average=2.15</td>
<td>0.58 – 2.15</td>
<td>Drinking Water Disinfectant</td>
<td>No</td>
</tr>
<tr>
<td>Bromate (ppb)</td>
<td>Monthly</td>
<td>10</td>
<td>0</td>
<td>Average < 5.0</td>
<td><5.0 – 6.1</td>
<td>By-product of drinking water disinfection utilizing ozone</td>
<td>No</td>
</tr>
</tbody>
</table>

5 LRAA= Locational Running Annual Average

Turbidity

<table>
<thead>
<tr>
<th>Substance (Unit)</th>
<th>Analysis Frequency</th>
<th>MCL</th>
<th>MCLG</th>
<th>Highest value reported</th>
<th>Lowest % of samples meeting limit</th>
<th>Major Sources</th>
<th>Violation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turbidity (NTU)</td>
<td>Continuous</td>
<td>TT, <0.3 in 95% of monthly samples</td>
<td>0</td>
<td>0.17</td>
<td>100</td>
<td>Soil Runoff</td>
<td>No</td>
</tr>
</tbody>
</table>

Note: Turbidity is a measure of the cloudiness of the water. It is monitored because it is a good indicator of water quality. High turbidity can hinder the effectiveness of disinfectants.

Microbiological Contaminants

<table>
<thead>
<tr>
<th>Substance (Unit)</th>
<th>Analysis Frequency</th>
<th>MCL</th>
<th>MCLG</th>
<th>Highest % positive samples (monthly)</th>
<th>Range</th>
<th>Major Sources</th>
<th>Violation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Coliform Bacteria (+/-)</td>
<td>Monthly</td>
<td><5% positive samples (monthly)</td>
<td>0</td>
<td>0.364</td>
<td>0 – 0.364</td>
<td>Naturally present in the environment</td>
<td>No</td>
</tr>
</tbody>
</table>

6 270 samples taken monthly
Gwinnett County has continued our participation in the Metro Water District’s Toilet Rebate Program for single-family homes in 2018. The program provides rebates to qualified homeowners for replacing old, inefficient toilets. Details about the single-family toilet rebate program are available by visiting www.northgeorgiawater.org or calling 404.463.8645.

In January 2012, DWR extended the successful high-efficiency toilet rebate program to multifamily residences. Apartment, condominium, and townhome communities that are Gwinnett County water customers may now qualify for a $100 rebate for every old toilet replaced with a WaterSense® certified toilet using 1.28 gallons per flush or less. For details about the multifamily toilet rebate program, please call 678.376.6722 or email dwrconserve@gwinnettcounty.com.

Since the single family toilet rebate program began in 2008, over 20,000 toilets have been rebated. To date, the County has allocated over $2 million to this conservation initiative and the effort is yielding an estimated water savings of over 400,000 gallons per day for our customers.

Toilet recycling is available at the DWR Central Facility in Lawrenceville. Residents in Gwinnett County who replace their old toilets through the Metro Water District’s toilet rebate program can drop them off to be recycled for free. The porcelain is recycled by breaking it up, mixing it into stone aggregate, and using the mixed material as road base and for pipe beds. Since the program began in February 2011, the County has collected an average of four tons of porcelain every month. As of March 2018, the program has kept almost 500 tons of waste out of Gwinnett County landfills! In addition to the old toilets collected by DWR, building owners are also required to recycle their old toilets in order to qualify for the Multifamily Toilet Rebate Program.

Is your house as water-efficient as it can be? Do it Yourself Household Water Audit brochures are available to assist water customers in reducing their water bills. This simple step-by-step guide will help you understand how much water you use, identify leaks, and use less water around your home. Free low-flow home retrofit kits are also available at the billing counter at DWR’s Central Facility on Winder Highway. Inside the kit are several water saving products including a low-flow showerhead, faucet aerators, and toilet leak detection dye tablets.

Efficient water management

Through best management practices such as an aggressive leak-detection program, a pricing structure that encourages water conservation, and a range of progressive County ordinances, DWR strives to maximize water efficiency and serve as a water conservation leader in the region. Gwinnett has also made a concerted effort to reduce water usage in County-owned facilities. All departments have taken positive steps to conserve water.

Since the program began in 2003, Gwinnett County has been a pioneer of reclaimed water use in the state of Georgia. At the state-of-the-art F. Wayne Hill Water Resources Center, wastewater undergoes a stringent treatment process that cleans it to an almost pristine state before being discharged into the Chattahoochee River or Lake Lanier.

To learn more about water conservation in Gwinnett, please visit www.DWRconserve.com or email dwrconserve@gwinnettcounty.com.

Understanding the Water Quality Chart

As in previous years, the Water Quality Report compares the quality of your tap water to state drinking water standards. The report includes information on all regulated and unregulated drinking water contaminants that were detected during calendar year 2017. Contaminants that were tested for, but not detected, are not included in this report.

PPM and PPB: Simply put, “ppm” means “parts per million” and “ppb” means parts per billion.” PPM corresponds to one penny in $10,000 or one minute in two years. PPB corresponds to one penny in $10,000,000 or one minute in 2,000 years.

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency.

Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as technologically feasible.

Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Nephelometric Turbidity Unit (NTU): A measure of suspended material in water. Turbidity is measured by shining a beam of light through water and measuring the angle at which the light is scattered by the suspended material. An instrument called a Turbidimeter is used for this purpose.

WATERQUALITYREPORT
What is Cryptosporidium?
Cryptosporidium (Crypto) is a one-celled parasitic protozoan often found in water sources that receive runoff from animal waste. Crypto can infect humans and have severe impacts on certain people, including organ transplant recipients, immunocompromised persons, young children, and persons undergoing cancer treatment. Water Resources has a monthly sampling and analysis program for Crypto and Giardia, another protozoan often found in water. Samples of both lake water and finished drinking water are analyzed each month. No Cryptosporidium or Giardia was detected in the lake water or drinking water over the last year. This test program is ongoing.